David Dias Marques - 011 - Sobre as estruturas dos domínios do ∆seg² isóceles e afins

Paracuru-CE

Data: 26/10/2025

Autor: David Dias Marques

E-mail: davidmarquesdias4@gmail.com

Título: 011 - Sobre as estruturas dos domínios do ∆seq² isóceles e afins

Palavras-chaves: domínio, produto, consecutivo, proposição, quadrado perfeito, ímpares, pares, números de Fermat, produto principal, produto secundário, 4x + 1, 4x + 3.

Querido leitor, segue abaixo um resumo, inicialmente com imagens, de como surgiu a descoberta da relação de contagem $\Delta i(b)$, assim também como os produtos principais e secundários de números ímpares entre dois números consecutivos, estando situados em colunas, ainda pertencentes a mesma coluna, sob as seguintes formas: 4x + 1 e 4x + 3.

Um pouco mais abaixo, algumas proposições descobertas, juntamente com suas possíveis demonstrações, ainda sobre os curiosos números de Fermat.

Fragmento do \(\Delta \seq^2 \) em sua forma is\(\delta \sec\) eles.

Vista para a relação dos três produtos: guia versus três valores consecutivos de um domínio consecutivo ao guia.

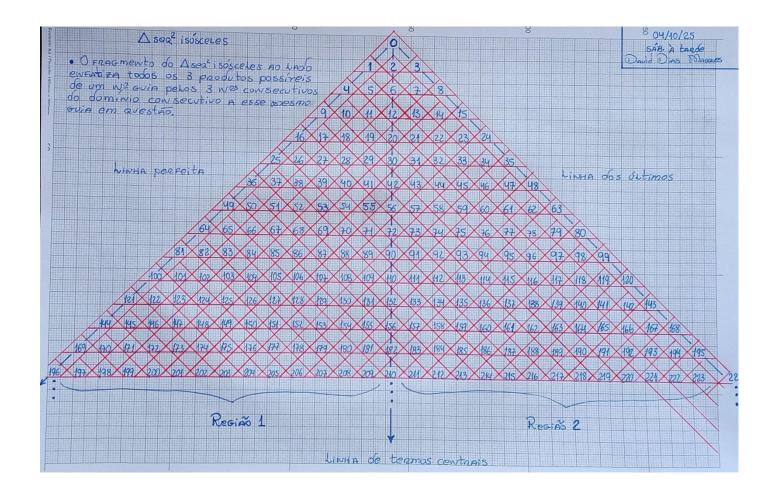
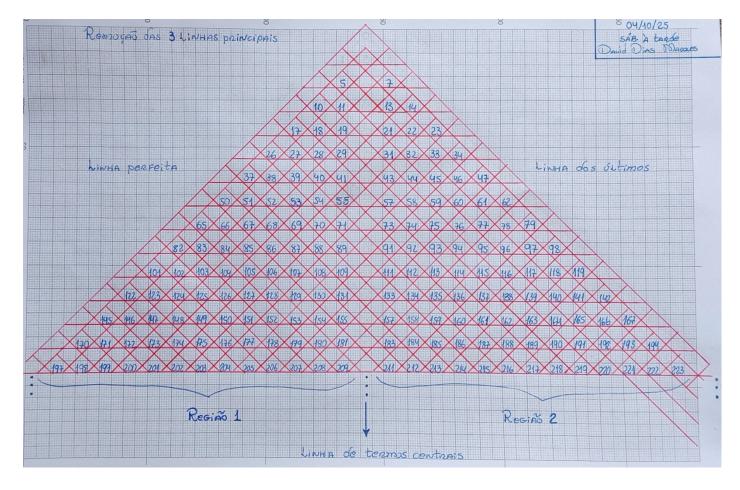
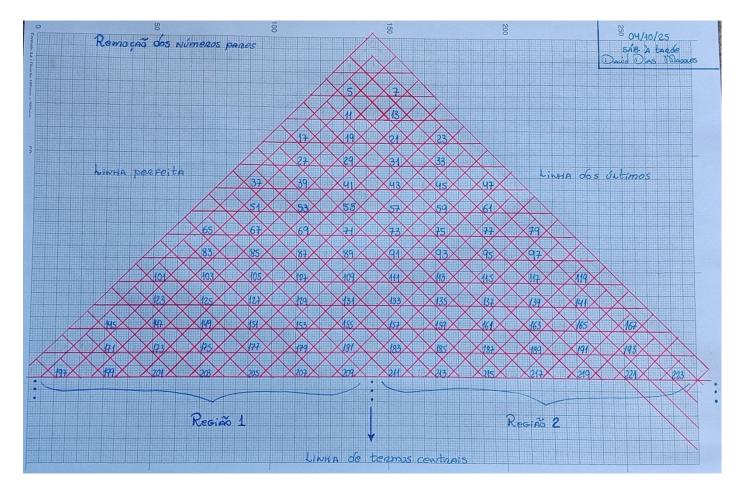


IMAGEM 2 Vista com a remoção dos números das linhas principais.

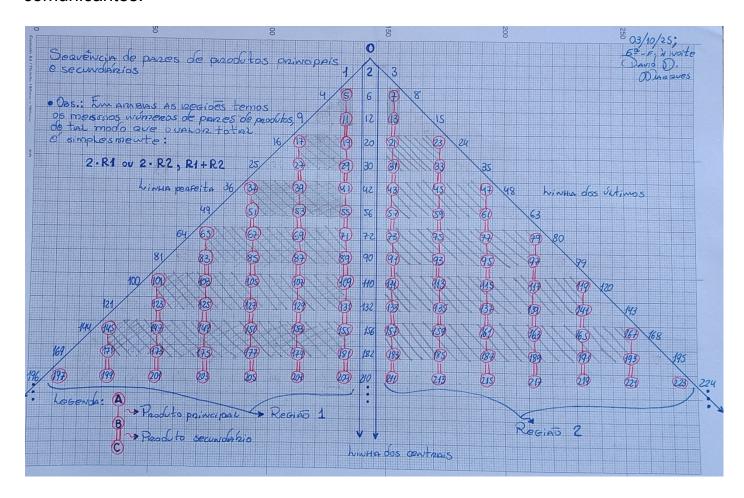


Vista com a remoção dos números pares.

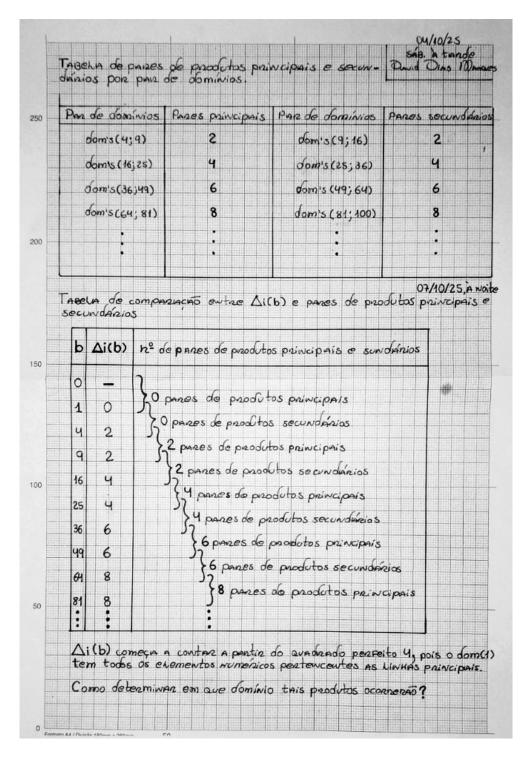
Originando, desta forma, os valores de $\Delta i(b)$. Obs.: Se b é um número par, o valor de $\Delta i(b)$ coincide com a \sqrt{b} . E a quantidade de $\Delta i(c)$ é igual a \sqrt{b} .



Vista dos produtos principais e secundários. Observe que estão organizados aos pares. E que os principais estão ligados por uma barra, enquanto os secundários por duas barras paralelas. Produto secundário é a relação entre os termos consecutivos de dois grupos de pares distintos. Onde tal comunicação ocorre apenas com os que estão alinhados. Observar as barras paralelas entres os termos comunicantes.



A primeira tabela nos mostra os respectivos pares de produtos principais e secundários por pares de domínios. A segunda, faz uma comparação entre as sequências de ímpares geradas por Δi (b) e sequências de pares de produtos. Perceba que ambas são iguais, porém, a sequência dos pares de produtos está avançada um valor, em relação a sequência de pares de Δi (b).



David Dias Marques - 011 - Sobre as estruturas dos domínios do Δseq² isóceles e afins

PROPOSIÇÃO 1

Se um domínio tem seu quadrado perfeito par, então o seu último termo dominado também é par.

Domínio de exemplo

O quadrado perfeito aqui é o 16, que é par. E o último termo é 24, que também é par.

DEMONSTRAÇÃO

Quando o quadrado perfeito for par:

Aplicando diretamente $b = (2n)^2$ em $2b + b^2$, conseguimos:

$$2(\sqrt{(2n)^2}) + (2n)^2$$

 $4n + 4n^2$

$$[4n(n+1)]$$

Sendo por essa razão, o último termo sempre será PAR.

David Dias Marques - 011 - Sobre as estruturas dos domínios do Δseq² isóceles e afins

PROPOSIÇÃO 2

Se um domínio tem seu quadrado perfeito ímpar, então o seu último termo dominado também é ímpar.

Domínio de exemplo

O quadrado perfeito aqui é o 9, que é ímpar. E o último termo é 15, que também é ímpar.

DEMONSTRAÇÃO

Quando o quadrado perfeito for ímpar:

```
Aplicando diretamente b = (2n + 1)^2 em 2b + b², conseguimos: 2(\sqrt{(2n + 1)^2}) + (2n + 1)^2 2(2n + 1) + 4n^2 + 4n + 1 4n + 2 + 4n^2 + 4n + 1 4n^2 + 8n + 3 [4n(n + 2) + 3]
```

Sendo por essa razão, o último termo sempre será ÍMPAR.

PROPOSIÇÃO 3

A forma 4n(n+2) + 3 adquirida acima é semelhante a forma 4x + 3, que nada mais é do que um número de Fermat, o qual não pode ser escrito como a soma de dois quadrados perfeitos. Sendo assim, todo último termo de um domínio de quadrado perfeito ímpar é expresso da seguinte forma 4n(n+2) + 3.

Perceba que a tal forma algébrica está sendo utilizada para certos valores inteiros positivos. E tais valores são obtidos através de n(n + 2).

```
Eis alguns dos valores conseguidos através de n(n + 2): \{0, 3, 8, 15, 24, 35, ...\}
```

Dessa forma, com o valores obtidos por n(n + 2), { n \geq 0 | n \in \mathbb{Z} }, a sequência de últimos termos adquire a seguinte forma: { 3, 15, 35, 63, 99, 143,. . . }

Perceba que 3 é o único primo dessa sequência, pois quando n = 0, a aplicação da relação 4n(n + 2) é nula, restando apenas o valor que está sendo somado a esse último.

Através de tal percepção, fica demonstrado que todos os últimos termos, QUASE QUADRADOS PERFEITOS, de domínios cujo quadrado perfeito é ímpar, são números da forma 4x + 3.

EXEMPLOS DE TERMOS INICIAIS E ÚLTIMOS TERMOS, SEPARADOS EM DOMÍNIOS

1º DOMÍNIO

Quadrado perfeito 0 (PAR), seu último termo é ele mesmo (PAR);

2º DOMÍNIO

Quadrado perfeito 1 (ÍMPAR), seu último termo é o 3 (ÍMPAR);

3º DOMÍNIO

Quadrado perfeito 4 (PAR), seu último termo é o 8 (PAR);

4º DOMÍNIO

Quadrado perfeito 9 (ÍMPAR), seu último termo é o 15 (ÍMPAR);

```
5° DOMÍNIO
Quadrado perfeito 16 ( PAR ), seu último termo é o 24 ( PAR );

6° DOMÍNIO
Quadrado perfeito 25 ( ÍMPAR ), seu último termo é o 35 ( ÍMPAR );

7° DOMÍNIO
Quadrado perfeito 36 ( PAR ), seu último termo é o 48 ( PAR );

8° DOMÍNIO
Quadrado perfeito 49 ( ÍMPAR ), seu último termo é o 63 ( ÍMPAR );

9° DOMÍNIO
Quadrado perfeito 64 ( PAR ), seu último termo é o 80 ( PAR );

.
.
.
ENÉSIMO DOMÍNIO
Quadrado perfeito ( b ), seu último termo é o ( b + 2√b ).
```

PROPOSIÇÃO 4

No (Δ seq² ISÓSCELES), é possível perceber que a (\sqrt{b}), sendo (b) um número exclusivamente (PAR), equivale a quantidade de termos ímpares entre as linhas principais do domínio de (b).

E no caso do quadrado perfeito seguinte, (c), temos apenas uma repetição da quantidade de termos ímpares encontrados para (\sqrt{b}).

No entanto, os valores que serão somados a (b) para criar tais números impares, são ímpares; no caso de (c), os valores somados serão pares.

Veja o exemplo de fragmento do (Δseq^2 ISÓSCELES), com ênfase apenas nos números ímpares obtidos através de $\Delta i(b)$ e $\Delta i(c)$.

```
dom(4): {5, (6), 7, (8)}
dom(9): {(10), 11, (12), 13, (14), (15)}
[dom(b): Lê-se domínio de b]
```

Retirando os termos PARES e termos pertencentes as LINHAS PRINCIPAIS, obtemos. Veja que os valores a serem removidos estão entre parênteses, como visto acima.

Ei-los:

Colocando tais números em função da soma de seu quadrado mais um certo valor inteiro positivo, conseguimos:

```
\{ (4+1), (4+3) \} (impares somados)
\{ (9+2), (9+4) \} (pares somados)
```

Texto autorizado para ser divulgado / compartilhado na Seção Colaboradores do WebSite: www.osfantasticosnumerosprimos.com.br

página: 11

Ficando apenas com os valores somados, e fazendo desses um triângulo em ascenção, obtemos:

Resumindo:

- 1. Quando o quadrado perfeito for PAR, os valores somados a (b) serão ÍMPARES:
- 2. Quando o quadrado perfeito for ÍMPAR, os valores somados a (c) serão PARES.

O PRODUTO ENTRE OS ÍMPARES RESULTANTES DAS CONTAGENS DE $\Delta i(\ b\)$ E $\Delta i(\ c\)$

Tais termos ímpares podem ser entendidos como a soma de (b) mais (n), estando tal valor contido no intervalo situado entre 1 e $2\sqrt{b}$. Todavia, pela proposição 4 sabemos que, se (b) for par, utilizaremos apenas os valores ímpares de tal intervalo. E oposto é valido para os valores de c, sendo (c) um quadrado perfeito ímpar, cujos valores adicionados serão os pares que estão situados entre o intervalo 1 e $2\sqrt{c}$.

Por exemplo:

$$5 \cdot 11 = 55$$

Colocando o produto em função da soma de um quadrado mais um certo valor dos seus respectivos intervalos, adquirimos:

$$(4+1) \cdot (9+2) = (49+6)$$

David Dias Marques - 011 - Sobre as estruturas dos domínios do Δseq² isóceles e afins

Ou ainda:

$$(2^2 + 1) \cdot (3^2 + 2) = (7^2 + 6)$$

De onde é possível extrair uma relação algébrica simples, cujos valores resultantes surgem na contagem de certos números ímpares em certo domínio.

(b+R)•(c+S), sendo R < SeR, S
$$\in \mathbb{Z}$$
+

Entenda que b = n^2 , c = $(n + 1)^2$, o valor máximo de R = $2\sqrt{b}$ ou 2n e que o valor máximo de S = $2\sqrt{c}$ ou 2(n + 1).

Logo, fazendo a distributiva, conseguimos:

$$b(c+S)+R(c+S)$$

Distribuindo novamente:

$$bc + bS + Rc + RS$$

Exemplo de aplicação:

$$b = 4$$
, $c = 9$, $R = 1 e S = 2$.

$$36 + 8 + 9 + 2$$

$$44 + 11$$

[55]

FORMAS ALGÉBRICAS - PRINCIPAL E SECUNDÁRIA

A partir daqui o objetivo é entender que formas algébricas expressam os números compostos, tanto os principais quanto os secundários. Mediante a seguinte formulação algébrica simples:

$$(b + R) \cdot (c + S)$$
, sendo $R < S \in \mathbb{Z}$ +

Com os seguintes significados para os respectivos termos:

b é um quadrado perfeito (par);

c é um quadrado perfeito (ímpar);

R é um número (ímpar);

S é um número (par).

Mas para entender a forma como os números se expressarão é necessário também "dissecar" os números que compõem os números que serão somados aos quadrados perfeitos.

Abaixo segue a próxima proposição, que fala exatamente sobre isso.

NÚMEROS DE FERMAT E OS PRODUTOS PRINCIPAIS E SECUNDÁRIOS ATRAVÉS DOS NÚMEROS ÍMPARES ORIGINADOS DE $\Delta i(b)$

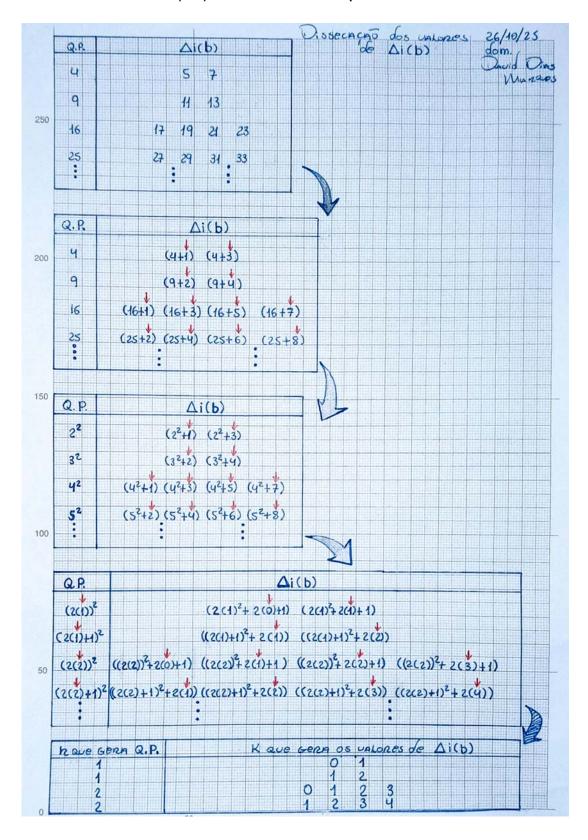
PROPOSIÇÃO 5

De acordo com a proposição 4, os termos ímpares originados de $\Delta i(b)$, sendo (b) um quadrado perfeito (par), tem seus termos dominados originados da soma do mesmo com números da forma 2n + 1, por isso (ímpares).

Seguindo um raciocínio quase semelhante, se (c) for um quadrado perfeito (ímpar), seus termos dominados serão a soma de (c) com números da forma 2n, por isso (pares).

Antes de substituir, ou trocar, as letras pelas formas ímpares e pares em (b+R)•(c+S), é preciso dissecar a estrutura que compõe os números que gerarão os que serão somados aos quadrados perfeitos em análise.

Nesta sexta imagem temos um fragmento do Δseq^2 isósceles que a cada etapa tem seus termos, oriundos de $\Delta i(b)$, dissecados um pouco mais.



1. EXEMPLO DE DOMÍNIO DE QUADRADO PERFEITO PAR DOMÍNIO DE EXEMPLO

{ (4), 5, 6, 7, 8 }

EXCLUSÃO DE TERMOS QUADRADOS PERFEITOS, PARES, CENTRAIS E ÚLTIMOS, POR $\Delta i(b)$

{ 5, 7 }

SOMA DE (4) COM VALORES ÍMPARES

 $\{(4+1), (4+3)\}$

TERMOS SOMADOS AO (4)

{ 1, 3 }

NÚMEROS QUE ORIGINARAM OS TERMOS SOMADOS AO (4)

{ 0, 1 }

Pois quando aplicados em (2n + 1), obtemos:

$$\{(2 \cdot (0) + 1), (2 \cdot (1) + 1)\}$$

2. EXEMPLO DE DOMÍNIO DE QUADRADO PERFEITO PAR

DOMÍNIO DE EXEMPLO

{(9), 10, 11, 12, 13, 14, 15}

EXCLUSÃO DE TERMOS QUADRADOS PERFEITOS, PARES, CENTRAIS E ÚLTIMOS, POR $\Delta i($ b)

{ 11, 13 }

SOMA DE (9) COM VALORES ÍMPARES

Texto autorizado para ser divulgado / compartilhado na Seção Colaboradores do WebSite: www.osfantasticosnumerosprimos.com.br

página: 17

$$\{(9+2), (9+4)\}$$

TERMOS SOMADOS AO (9)

{ 2, 4 }

NÚMEROS QUE ORIGINARAM OS TERMOS SOMADOS AO (9)

{ 1, 2 }

Pois quando aplicados em (2n), obtemos:

$$\{(2 \cdot (1)), (2 \cdot (2))\}$$

A partir de inúmeros exemplos observados é possível criar uma primeira tabela de termos que serão somados aos quadrados perfeitos respectivos para gerar os termos de $\Delta i(b)$:

Q.p.'s números que serão somados aos Q.p.'s

(4)			1	3		
(9)			2	4		
(16)		1	3	5	7	
(25)		2	4	6	8	
(36)	1	3	5	7	9	11
(49)	2	4	6	8	10	12

Abaixo, segue uma segunda tabela com os valores de (n) que gerarão os números que comporão os quadrados perfeitos. Assim como os valores, que, ao serem somados com tais quadrados, originarão os ímpares de $\Delta i(b)$.

OBSERVE

Q.p. n de origem dos Q.p.'s n dos que nº's que serão somados

(4) (1) 0 1 (9)(1) 1 2 2 (16)0 3 (2)2 3 1 4 (25)(2)2 3 4 5 1 (36)(3)0 3 4 5 6 2 (49)1 (3)3 5 6 7 2 1 (64)(4)

VISTAS DOS PRODUTOS PRINCIPAIS E SECUNDÁRIOS

PRINCIPAL

1 [0 1 1 [1 2

SECUNDÁRIO

1 [1 2 2 [1 2

PRINCIPAL

2 [0 1 2 3 2 [1 2 3 4

SECUNDÁRIO

2 [1 2 3 4 3 [1 2 3 4

PRINCIPAL

3[0 1 2 3 4 5 3[1 2 3 4 5 6

SECUNDÁRIO

3 [1 2 3 4 5 6 4 [1 2 3 4 5 6

PRINCIPAL 4 [0 1 2 3 4 5 6 7 4 [1 2 3 4 5 6 7 8

.

PROPOSIÇÃO 6

A raiz do quadrado perfeito (b), SENDO (b) PAR, tem seu valor expresso no último termo da linha consecutiva de números que ORIGINARÃO os termos de Δi(b), quando somados ao mesmo.

EXEMPLO:

n dos Q.p.'s n dos que nº's que serão somados Q.p.

(4)	(1)	0 1
(9)	(1)	1 2
(16)	(2)	0 1 2 3
(25)	(2)	1 2 3 4
(36)	(3)	0 1 2 3 4 5
(49)	(3)	123456
(64)	(4)	0 1 2 3 4 5 6 7

Observe na tabela acima, os seguintes exemplos abaixo:

A raiz de 4 é 2, e 2 é o último termo da segunda linha dos (n)'s que originarão os valores que serão somados a 9;

A raiz de 9 é 3, e 3 é o último termo da segunda linha dos n's que originarão os valores que serão somados a 16;

A raiz de 16 é 4, e 4 é o último termo da segunda linha dos n's que originarão os valores que serão somados a 25;

A raiz de 25 é 5, e 5 é o último termo da segunda linha dos n's que originarão os valores que serão somados a 36;

A raiz de 36 é 6, e 6 é o último termos da segunda linha dos n's que originarão os valores que serão somados a 49;

PROPOSIÇÃO 7

Esta proposição destina-se a ordenar as nuances exprimidas através de conceitos anteriores, os quais acabarão por culminar nos números emergidos da (produção principal), assim também como da secundária.

É interessante mencionar que a variação que guia a produção do número composto subsequente acontece a partir de variações mínimas nos termos consecutivos, como descrito abaixo de forma geral.

No caso do produto principal, no (k) consecutivo. Já no caso secundário, no (n) consecutivo.

Sendo tal generalização baseada nas informações contidas nas estruturas dos exemplos anteriormente propostos.

Os valores de (n) originarão os quadrados perfeitos.

Os valores de (k) comporão os números que serão somados a (b), de modo genérico, afim de obter os valores obtidos por intermédio de $\Delta i($ b).

7.1 REPRESENTAÇÃO GERAL DOS PRODUTOS PRINCIPAIS

REPRESENTAÇÃO PRINCIPAL MÍNIMA

REPRESENTAÇÃO PRINCIPAL GERAL

7.2 REPRESENTAÇÃO GERAL DOS PRODUTOS SECUNDÁRIOS

REPRESENTAÇÃO SECUNDÁRIA MÍNIMA

REPRESENTAÇÃO SECUNDÁRIA GERAL

De tudo já abordado aqui sobre os domínios e sobre os produtos entre os termos $\Delta i(b)$, de forma consecutiva em coluna, é possível extrair duas relações algébricas GERAIS para ambos os casos: principais e secundários.

7.3 RELAÇÃO PRINCIPAL GERAL

$$((2n)^2 + (2k + 1)) \cdot ((2n + 1)^2 + 2(k + 1))$$

Com valores de (n) idênticos, mas os valores de (k) diferindo entre si em uma unidade, do lado do (Q. p. ímpar).

DESENVOLVIMENTO E SIMPLIFICAÇÃO

$$((2n)^2 + (2k + 1)) \cdot ((2n + 1)^2 + 2(k + 1))$$

Simplificando alguns termos:

$$(4n^2 + (2k + 1)) \cdot ((2n + 1)^2 + (2k + 2))$$

Fazendo a distributiva:

$$(2n + 1)^{2} \cdot (4n^2 + (2k + 1)) + (2k + 2) \cdot (4n^2 + (2k + 1))$$

Abrindo o produto notável:

$$(4n^2 + 4n + 1) \cdot (4n^2 + (2k + 1)) + (2k + 2) \cdot (4n^2 + (2k + 1))$$

Chamando $(4n^2 + (2k + 1))$ de G e substituindo, obtemos:

$$(4n^2 + 4n + 1)G + (2k + 2)G$$

Fazendo a distributiva:

$$4n^{2}G + 4nG + G + 2kG + 2G$$

Simplificando o que for possível:

$$4n^{2}G + 4nG + 2kG + 3G$$

Trocando G por $(4n^2 + 2k + 1)$:

$$4n^{2}(4n^{2} + 2k + 1) + 4n(4n^{2} + 2k + 1) + 2k(4n^{2} + 2k + 1) + 3(4n^{2} + 2k + 1)$$

Distribuindo e simplificando:

$$4(n(4n^3 + (2n + 1)^2 + k(3n^2 + (n + 1)^2 + k + 1)) + 3$$

Essa forma demonstra que o produto de ímpares consecutivos PRINCIPAIS, oriundos de $\Delta i(b)$, gera números de Fermat da forma 4x + 3, de acordo como está expresso pela relação acima.

7.4 RELAÇÃO SECUNDÁRIA GERAL

$$((2n)^2 + (2k + 1)) \cdot ((2(n + 1) + 1)^2 + 2k)$$

Com valores de (K) idênticos, mas os valores de (n) diferindo entre si em uma unidade, do lado do (Q. p. ímpar).

DESENVOLVIMENTO E SIMPLIFICAÇÃO

$$((2n)^2 + (2k + 1)) \cdot ((2(n + 1) + 1)^2 + 2k)$$

Simplificando alguns termos e parênteses:

$$(4n^2 + 2k + 1) \cdot ((2n + 3)^2 + 2k)$$

David Dias Marques - 011 - Sobre as estruturas dos domínios do ∆seg² isóceles e afins

Fazendo a distributiva:

$$(2n + 3)^2(4n^2 + 2k + 1) + 2k(4n^2 + 2k + 1)$$

Chamando 4n² + 2k + 1 de G para melhor visualizar a distribuição dos termos e seguida abrindo o produto notável, adquirimos:

$$(4n^2 + 12n + 9)G + 2kG$$

$$4n^2G + 12nG + 9G + 2kG$$

Trocando G por $4n^2 + 2k + 1$, conseguimos:

$$4n^{2}(4n^{2} + 2k + 1) + 12n(4n^{2} + 2k + 1) +$$

 $9(4n^{2} + 2k + 1) + 2k(4n^{2} + 2k + 1)$

Novamente fazendo a distributiva e simplificando:

$$16n^4 + 8kn^2 + 4n^2 + 48n^3 + 24kn + 12n + 36n^2 + 18k + 9 + 8kn^2 + 4k^2 + 2k$$

 $16n^4 + 40n^2 + 48n^3 + 12n + 9 + 16kn^2 + 4k^2 + 24kn + 20k$

Veja que o termo independente é 9. E já temos consciência, através de alguns exemplos, que o produto secundário entre ímpares oriundos de Δi (b) têm sua estrutura algébrica tendendo para 4x + 1. Deste modo podemos, se realmente for possível, quebrar o 9 em (8 + 1). E por meio dessa ideia buscar uma simplificação da expansão da relação, de tal modo que surja como a multiplicação de 4 por uma conjunção lógica dos termos, antes ofertados pela relação primordial mais um.

E finalmente obtemos:

$$4(4n^{2}(n+3)+2(n(4n+1)+(n+1)^{2})+k(n^{2}+3(n+1)^{2}+k+2))+1$$

Essa forma demonstra que o produto de ímpares consecutivos SECUNDÁRIOS, oriundos de Δi(b), gera números de Fermat da forma 4x + 1, de acordo como está expresso pela relação acima.

